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Abstract. In this paper we continue the investigation of an anisotropic integrable spin chain,

consisting of sping = 1 ands = % started in our paper [1]. The thermodynamic Bethe

ansatz is analysed especially for the case, when the signs of the two couplmgs™ differ.

For the conformally invariant modef (= ¢) we have calculated heat capacity and magnetic
susceptibility at low temperature. In the isotropic limit our analysis is carried out further and
susceptibilities are calculated near phase transition linef €at0).

1. Introduction

Since the pioneering work of de Vega and Woynarovich [2] for the construction of models
with alternating spins quite a lot of interesting generalizations have been presented [3-5].
Otherwise, not many results were obtained concerning the physical structure of the models,
e.g. the low temperature behaviour of heat capacity and magnetic susceptibility. Even the
structure of the ground state in the framework of the Bethe ansatz is not fully understood
for the original model.

In this paper, therefore, we continue our investigation of ,WéZ(%, 1) model with
strictly alternating spins started in [1], which will be referred to as paper | throughout.

In section 3 the thermodynamic Bethe ansatz (TBA) is analysed for zero temperature
in different regions of coupling constants. Section 4 deals with the conformally invariant
model, where the low temperature behaviour can be determined analytically. In section 5 we
derive some new results for the isotropic caSEX(%, 1). Our conclusions are contained
in section 6.

2. Definition of the model

We refer the reader to paper | and [2] for the basics of the model; we will follow the
definitions and notations of paper | here.
Our Hamiltonian of a spin chain of lengthV2is given by

H(y) = CH(y) + EH(y) — HS* (2.1)

with the two real coupling constantsand ¢. The anisotropy parameter is limited to
O<y<m/2.

1 E-mail address: doerfel@qft2.physik.hu-berlin.de
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For convenience we repeat the Bethe ansatz equations (BAE) and the magnon energies:

sinh(A; + i M sinh(x; — i
G +15) sinhia, +i) )" _ IR gy o)
sinh(i; —|2)smh(x —iy) i1 SINh(A; — A — i)
E =CE + CE — <3’;V —M)H (2.3)
_ M 2siny
E=- ——— —— 24
; cosh2; — cosy (24)
. M 2sin2
E=— . 25
; cosh2,; —cos %y (29

3. Thermodynamic Bethe ansatz and the ground state for different signs of the
coupling constants

In section 3 of paper | the TBA was considered for special valueg ef r/u, u integer
andu > 3. We also argued, that the ground state structure is uniform in our whdgion,
while we expect possible changes for the excitations atytpmints above. We therefore
use the results of paper | for the possible appearance of strings in the ground state according
to the different regions of couplings.

For completeness we quote in all cases of the TBA, equations (3.19) of paper |. We
found it more convenient to usespace instead of Fourier transformation, which can be
easily derived from our equations below. We then recall

2sinny
cosh2 Fcosny

For shortness we drop the magnetic field in the TBA, it can be added later without any
problem.

Now we analyse the zero-temperature TBA in the various regions of sigrisaiodc.

(i) c>0,¢c>0.

fOon, £1) =+ (3.1)

&) =—cf'(A1L1)—cf'(h,21) — [8(A)+ 1

_f’(K,1,1)+f’(K,3,1)] _
= * €,

f'(, 2, 1)} _
L 7 ke
27

(3.2)
LD+ (3, 1)} -

&0y =—cf 2D = f LD+ f (A3 D] - [

2 !
i 21/ (A, 2,1 (A, 4,1
_ 8()\.)+ f(9 9 )+f(9 9 )}*62 (33)
i 2
with the convolutiona * b()) defined as
axb(h) = / a(h — w)b(w) du. (3.4)

The solution has already been given in [2], where the excitations have also been found.
(i) c >0,¢ <0O.
We expect(1, +) and (1, —) strings

2w !

) =——cf/ ML —-cf'(r21— [3@) + M} *€;
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', 2,-1) _
+ [‘fZT[} *k 671 (35)
6—_’—1()") = _5f,()"a 17 _1) - Ef/()"ﬂ 2’ _1) - [f/(}\"zf[’_l)] * 6l—

f/()\, 2, 1)i| % 6:1. (3.6)

-1

At first it might be expected that the solution is given when both strings are distributed with
infinite Fermi radius. We have determined this state and calculated its energy, but it is not
the ground state. The same applies to the state with dnly) strings. That can already

be seen superficially after obtainirsy # O for it.

The situation changes when onl¥, —) strings are considered. This is due to the fact,
that the last two terms in equation (3.5) are definitely non-negative while this is not the
case in equation (3.6), where the term after dHenction spoils the argument.

Equation (3.6) fore; (1) = 0 has been already solved in paper I.

() = e 1 . dwe  coSmy/2(m — y))coshmA/(w — yv))
T m—ycoshr/(m —y)  w—y cosh2ri/(x —y)) +cosny/(m —y))’
3.7)
Introducing the functiorg (&, )
4r  coqma/2(w — cosimA /(T —
2(h. ) = Sra/2(m —y)) coshmAr/(w — y)) (3.8)
m —y cosh2r/(mw — y)) + cosmwa/(w — y))
the solution of equation (3.5) can be written as
e () = —cgh, /2 —y) —ig(h, /2= 3y/2). (3.9)
For consistency it is necessary to have
e ;0 <0 and e () =0. (3.10)
Both conditions specify the region efandc¢ where our solution is valid.
We start withe; (1)
2w c ¢
€1(0) = — [ + }20. 3.11
' 7 —y Lcosm(r —2y)/2(x —y)) " cosz(x — 3y)/2(m — y)) 1)
Considering the asymptotics far— oo one has
_ o wm=2y) . A —37)]
— cCc0S———— 4+c¢cC0S———— >0 3.12
ﬂ—y[ 2(r —y) 2(r —y) (3.12)

We now assume that the two necessary conditions (3.11) and (3.12) are also sufficient to
fulfill the second part of (3.10).

The smaller of the ratios of the two cosine functions is then the upper limiy |&f.
Hence after elementary recasting

c 1 2

= < O<y<

lc| ~ 2cosmy/2(m —y)) 5

_ (3.13)
c Ty 2 b4

— <2c0s——— —<y<=.

Ic| 2(r —y) 5 2

We treate”; (1) in the same way obtaining
£ <2c0s. Y (3.14)

|| 2 —y)
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(L+)

2+
(1,+)

2,4)

Figure 1. The phase structure of th!éXZ(%, 1) model fory = /3. The ground state strings

are indicated for the four different sectors. The arrows symbolize the decreasing Fermi radii of
the corresponding strings. Broken lines are coordinate axes. Where axes are drawn full they
coincide with sector borders.

Now it is not difficult to show that condition (3.14) is fulfilled, when (3.13) holds.

Therefore, our solution, a sea @f, —) strings with infinite Fermi zone, is the ground-
state configuration as long as the inequalities (3.13) hold. Ifdh®-plane this is an open
triangle formed by the negativ@&axis and the straight line given by relation (3.13) when
the equality holds (see figure 1). Fpr— 0 (isotropic case, see section 5) thigjsc| = %

For increasingy the region first enlarges untl = 27 /5 and then shrinks and approaches
the ¢c-axis wheny — /2.

Above that line we still expectl, —) strings but together with1, +) strings. So
moving counter-clockwise from the positiveaxis towards that line the Fermi radius of
the strings with positive parity shrinks from infinity to zero, while the radius for the strings
with negative parity is infinite, as can easily be seen from paper | (3.17), which implies
in the caseH = 0, that its energy function does not change sign and is therefore strictly
non-positive in the limit7 — O.

It is remarkable that a finite Fermi zone occurs without the presence of a magnetic field.
Apparently the second coupling plays the role of an external field.

(i) ¢ <0,¢ > 0.

We expect(2, +) and (1, —) strings

& (W) =—cf' (A, 2,1) —e[f'(A, 1,1+ f(x3,1)]

_[a(x)+ 20,2 1)2:f()\,4, l)}*q
N [f (. 1, —1)24;1‘ *, 3, —1)} e, (3.15)

f/()\"l? _l)+f/()"137_1)} _
* €

e =—cf'(A1, -1 —cf'(h2,-1) —[ > >
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f/()"v 21 _1) _
271:| *671.

We have found that qualitatively the same arguments apply as in case (ii) above. Thus, we
consider first only(1, —) strings with infinite Fermi radius. Now it is necessary to assure

€5 (1) > 0 in addition to the first condition of (3.10). Instead of condition (3.14) it gives
now

- [5@) - (3.16)

c 2

é' = (3.17)

¢~ codmy/2m —y))
which guarantees_; (1) < 0. When calculating, one has to be careful when the Fourier
transformation off’(x, 3, —1) is to be taken. It vanishes for = 7 /3 and changes the sign
after that point has been passed. Finally one obtains

€ () =g, /2 =3y /2) — g, w/2—y) — Cg(h, /2~ 2y)

O<y<mn/3 (3.18)
e (x) =0 T/3<y <m/2
There is no contradiction with paper | (3.24), which gives two different valueg farm/3
andy = 7 /3, while largery-values were not considered there.

Let us first consider O< y < =/3. Then from equation (3.17) we have the two
conditions

B 2 ( c n c
7 —y \coSn(mw —3y)/2(w —y)) coSn(wr —2y)/2(w —y))
c
>0 3.19
T Costn( — 4y)/2(r — y))) (319)

2 _ (T —3y) . T —2y) . w(r — 4)/))
cCOoS +ccoOS————~+c¢C0S————- |20
ﬁ—y< 2(r —y) 2(r —y) 2(r —y)

Straightforward calculation gives

¢l 8coS(wy/2(m —y))
z 2=y M F 2 deodtry 20t — ) — 10

The upper term of the r.h.s. is always smaller than the r.h.s. of (3.17). Hence we have
to find the maximum of the two r.h.s. of formula (3.20) and (3.17). In ptregion the
second inequality of (3.20) is the most restrictive one. Putting things together we find for
the region with(1, —) strings only

(3.20)

|| 8coS(ry/2(m —y)) m

- = O<y <=

¢ 4cod(my/2(r —y)) —1 3

_ (3.21)
Ic] 2 T T

2 S Sy <.

c cosmy /2(mr —y) 3 2

The (¢, ¢)-plane is an open triangle formed by the negativexis and the straight line given
by relation (3.21) when the equality holds (see figure 1). For O (isotropic case, see
section 5) this ig¢|/¢c = g. For risingy the region shrinks and approaches &kaxis when
y — 1w /2.

Above that region we expeci, —) strings together with2, +) strings the latter with
finite Fermi radius. The picture resembles region (ii) above.

(iv) c<0,¢<0.
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Here the vacuum is formed by, —) strings only.

(3.22)

€M) = —¢f (1, 1) —Ef'(h, 2, —1) — [5(/\) + f(’\zi_l)} *e,.

This region was studied in paper | where the excitations have also been found.

(v)¢=0,¢>0.

(viyc>0,c=0.

We add nothing new to both cases considered earlier in [2] and [6].

Now we can summarize our results about the the ground state structure for different
values of coupling constants. There are four regions and two singular lines (v) and (vi).
In the two regions with equal signs (which contain the lihe= ¢) the ground state is
independent of the values ofand¢. Here also the Fermi radii are infinite. There is no
mass gap in the excitation spectrum.

In the two other regions infinite and finite Fermi radii occur and the concrete structure
of the ground state depends on the ratié. Nevertheless, we expect them to be gapless
also.

The picture is not fully symmetric, because region (i) is separated from all others by a
highly degenerate ground state on both lines. This is connected with the fact that one sort
of string has to disappear at once.

Finally, the model shows an antiferromagnetic behaviour everywhere (for vanishing
magnetic field) as long ag > 0. The isotropic case is considered in section 5.

4. Calculation of the low-temperature behaviour in the case: = ¢

In this section we calculate the low-temperature heat capacity and magnetic susceptibility
for vanishing magnetic field in the cage= ¢.

We therefore go back to equations (3.10)—(3.13) of paper | wheigeconsidered to be
small but finite. Instead of [6] where the free energy was calculated, we use a method due
to Wiegmann [8], which for our purpose was used by Babujian and Tsvelick [9] to obtain
the results for theX X Z(S) model from entropy and polarization. To explore this method
it is necessary to ensuie < /3, y = /u; u integer.

We will present in some detail the cage= ¢ = ¢ < 0 while for ¢ > 0 we mention
only the necessary changes and the final results.

For ¢ < 0 we have

6,20 ]=1M—1
€, <0
and
p; = 0 forT — 0 ifj=1...n—-1

pu— 0 for T — 0.

Our aim is now to recast BAE and TBAE in a form where energies and densities are given
through their zero temperature Iimi¢§°) ande;o’ and values vanishing faf — 0, i.e. the
energy functions Il + exp(—e;/T)), j=1...p—1andInl+expe,/T)).
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The main step is the multiplication barl which after some algebra leads to the systems

€ = qu © ZQ  (— 1)’<k>T|n(1+exp( ))

— K % (=1)""“TIn (1 + exp(—))

(4.1)
H €
€ =8 17’%“)) n ZB © (=T In (1+ exp( T"))
—Kx(=1)"™WTIn (1 + exp(?))
and
1
= DBt p) = 5 € Z Qi * pi + K * fy
(4.2)
o 1 -
— DG o) =5 6"+ Z By % pi+ Q) % pu
¢ =1
where we have introduced
K(3) = =Ty A, (0)
k(W) = =Ty Ay (R) (4.3)
Bjx(L) = (Tj + T, * A T )(A).

Now we want to perform a shift of the—variable in the functions; (1) in the following
way:

1 T
QDI()\,) = ?Ej <)\ +aln 27'[|c|) (44)

where the constant will be determined yet. We choose it in a way that(1) for
A — oo has a finite limit if T — 0. From paper | (3.24) we can see, that for all
6;0)()») ~exprr/(r —y)) if L - oco. Thereforea = —(r — y)/y.

After that shift the system (4.1) is rewritten as

Hp =2
u = z—ﬁ — Z O * (=1 ® In(L+ exp(—¢r) — K * (=1 In(1 + exp(¢,.))
k=1
1 TA T
+ exp| — 1+2cos—— —
v p( n—y)[ 2(/1—1)}
Hu
0= St + Z Bjx (—1 In(1+ exp(—g1) 45)

— K % (=1’ In(1 + exp(¢,))

2 2 (n-j=-Yr (-
+n—yexp<_n—y>[°°s 2u-1 %21
(M—J—l)n]
+
cos 50— 2)

The system (4.2) is treated analogously.
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After differentiating equation (4.5) one obtains the important relations

p; e P T YLy ® J’Tiln(1+exp(—<pj))
m 27 |c| 272|c] O (4.6)

- n—1 T T —
Ar—"""1n 1D T—Inl e
p,( " 271'6') —-(=D 222c| (1+ explg;))

forj=1...u

These relations are necessary to make the appropriate substitutions of variables in the
integrals forS and S,. No such relations are expected as soow &sc.

The starting point for the heat capacity calculation is the expression for the entropy

0 R O A

Using symmetry angb;/p; = €/T we have
S [l o)
== 22/ dr[p; In(1 4 €7/ 4 5; In(L + e~/ T)]. (4.8)
N "o

For T — 0 the main contribution to the integral comes frams> 1
After performing the shift (4.4) and using relations (4.6) the entropy becomes

— Z( )V(J)/ )
| | }—In(b{’w

+ o |n(1+e¢.f)|n(1+e%)] (4.9)

da |:8 N1+ e %)In(l+ &%)
) o

We are interested only in the leading order for vanishing temperature. Therefore we can
substitute the lower limit by-oco (both integrals converge).

We will see in a moment that the remaining integral is even independent of

Now it is straightforward to change the variable in the way

1

for every integral in the sum (note the change in the definition of the funcfiom
equation (3.18) of paper I).
In final form

f@H Inx In(1—x)
r(j)
2|c| Z( v /m, @ [1—x T } @41

with 7 = @; (+00).
The integral is given by the functiop(a, b) already introduced in [9] from where the
necessary special values have also been taken.

b In 1

y(a,b):/ dx [ * +|n(1—x):|. (4.12)
a 1—-x x

Following the standard procedure [8] it is more convenient to use another form of the TBAE

to determine(pf. They differ from those of th&X X Z(S) model [9] in the terms with the

coupling constants only. It is the system (3.17) from paper |I.
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After the shift it takes the form

TA
p1(A) = —s *In f(p2) (1) + |c| exp(—n_y>

TA
o;i(W) = —s = In[ f(@j+1) f(@i—)]) + Ic] EXP(—H> dj2

(4.13)
Hp
@u—l()\) = ﬁ —sxIn f((pp.—Z)()L)
Hp

ou(r) = o7 +s*xIn fpu-2)A).
For A — —oo the inhomogeneous terms generate a solution of the form

(p{ / (4.14)

®, =—00
which implies

(7)) =0 i=1...n—-1
1y J Iz (4.15)

flp,) =1
For A — oo the free terms can be neglected, and thus the solution is given in [9]

[ sinhH/2T) 7P
@)= [sinh(H(j + 1)/2T>}
. _Hu sinh(H (x — 1)/2T)
Y11= or ln[ sinh(H /2T ] (+19)
L @ I |:sinh(H(M - 1)/2T)}
bu =21 sinh(H /2T)
For H — 0 then
o +y o1 P |
reh= e feio=T fep=1- . (4.17)

We mention that the above solution does not depend on the sign of the coupling constant.
The consequences of that fact will be considered below.
Now we can calculate relation (4.11):

M

N

Q

S @-pT &R 1 1\ 1 }
= T A5 (Gene0) oy (o) - (- )
T 5 (Gree0) 2 (o)
S = o)+ (-,
77/c] {,-zly Groz ) T\
_(n—y)T{l 2}
o 3
- )T
ZLWV') . (4.18)
c=""Vr (4.19)

J=
m2|c|
Finally, for the heat capacity per site (of a chain witN 2ites)
6|c|
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The polarization is obtained in the same way as in [9] starting with the basic formula

5z ® x
== ‘;{ [ B puah) - [ o pm)} (4.20)

which for our model takes the same form. Using symmetry and the shift gives
SZ

a :2‘5{/0 dm_lm—/o dxp,w}
B S R
_M{ [w oo gy A d

®(r—y)T 9 _
T EYT9 d ey da
/_oo 2n2lc| ax " TE )d}

T 1+ exp(—e,t 1+ exp(—g;,
— DT, ME0) || 220 L (4.21)
212|c| 1+exple, ) 1+exple,_ )

For the first term we use relations (4.16) with> T.

L Hp N exp(H(u—1)/2T) ] H(p—1)
bu-1= o exp(H/2T) | T 4.22)
. Hp | [emHu-D/20)]_H |
u= o1 exp(H /2T) T
and hence

H(u-1
1+expo; ) = exp((MT )> 4.23)
1+exp—¢f) =1

In the second term (4.14) must be completed by corrections containing the leading term in
H
1+ exp(—<p,;) - _ Hu
n| ————— | = Py —lu1= T
1 + exqwu_l)

. 4.24
. (4.24)
Putting things together

S* (r —y)H

i . 4.25

N M 2n2 (4.25)
and finally for the susceptibility

_KH-1_ m-y

X= 4rlc|  dmyle|

(4.26)

Now we perform the calculation far= ¢ = ¢ > 0. We will list only the necessary changes

in the calculation, induced by the sign of the coupling constant.cFer0 we have
€1,62<0

The shift in equation (4.4) must now be takensas: —x/y according to the asymptotics
of the¢/”. Instead of equation (4.6) we have then

T Y d
Ar=pnln— ) =D 2T In(1+ exp(—g;
p,( 2 2716) =D Ty (14 exp(—¢)))

(4.27)
pi | A —,ulni — —(—1)"(j)LTi|n(1+eX[Xg0-))
! 2mc 2m2c” I (e
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Note the change of the overall sign.
Consequently, (4.11) is modified

sy r(})/f“ﬂf) Inx In(1—x)
5= C;( 1) dr |+ . (4.28)

@) X

The change in the system (4.13) is obviously the replacemeft| dfy —c. As already
mentioned above, there are no changes in the solutions fer co. For A — —oo the
solution is contained in [9]:

flop) =flp) =1

Foy = [ Sinh((H1/2T)1/ (1 — 2)) T

! sinh((Hw/2T)(j — 1) /(i — 2))

- _Hu | TSInN(HR/2T) (0 = 3)/(n = 2)) (4.29)
bu-1= o SINN(H 10/ 2T)1/ (1 — 2)
__ Hp | TSIn((HR/2T) (= 3)/(u = 2))

Yu= o1 Sinh(H 0/2T)1/ (i — 2) '
For H — 0 this implies

fle) j=3...u-2

. 1
o -1?
_ 1
f(‘/?,kl) = i

Now we are ready to find the sum in equation (4.18)

(4.30)

_ 1
fo=1-_ "5

"
YD Py e =y Dy )

j=1
S (i gan) o (ied) (1)
— —02 G+02) T \u=2 )Y n=2""nu
1 1 S 1
:y(1,4)+y(l,gt)+zl:y<(]+1)2,0)
1 1
_Zy< (+1>2>+y(0’4)+y(0’9)+zy<u 2’u)

2 1 1 w2 1 1
—2)/(10)+3—2)/( 0)+2y(O,M>—3+2y(M_2,M>
=2y(1,0)

2
:2%, (4.31)
Finally,
T
=7;7_ (4.32)

Polarization (4.21) is modified

z 1 + 1 -
ST | i roe) SXPGu) | N Y xR, . (4.33)
N  2nc 1+ exp(—¢;}) 1+exp—¢,)
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Relations (4.23) are still valid. From equation (4.29) we obtain

_ Hupp—3 __Hp 1
- 7= = and = = 4.34
Pu-1 T n—2 u T n—2 ( )
Therefore,
SZ H 7
S B —1- =
- L G|
T H 2
[ 4.
~ 27c¢ T u—2 (4.35)
and finally
1 1 1
_ Y (4.36)

ZEM—Z_%H—ZJ/'
Now we have to compare our results with those of other authors who have presented
calculations especially for > 0. To avoid ambiguities we multiply heat capacity and
susceptibility by the speed of sound afterwards the result becomes unique, not depending
on the normalization of the coupling constant.

From [1] and [2] we can derive
2 2
vy = il forc >0 and vy = el forc < 0. (4.37)
4 =Yy

We have also used our method to obtain the values for the two homogeneous syste@s (
ands = 1). At least, the susceptibility far = 1 has not been calculated before in the case
of negative coupling. (Heat capacity was determined in paper [10].) In all cases considered
we found, for the heat capacity, the conformal result

c,Tm
3

wherec, is the central charge of the Virasoro algebra, which is equal to one for negative
coupling.

It is remarkable that formula (4.11) is preserved, because (rewritten for the entropy per
site) the factor in front of the sum is always equal &) (apart from the sign) while
the sum measures the central charge (being equafdg/3).

The form of equation (4.21) for the polarization per site can be understood in the same
way. The factor in front of the logarithms is alway¥ (2v,y), while for different signs
and spins the logarithms also differ.

For positive coupling they yield the resul§’2(x — 2y S")H/T where§’ is the larger
of the two spins (our model ha& = 1), which may be equal.

Therefore

Cv, = (4.38)

S/
T —28y
which is consistent with all former results, especially with paper [9] for homogeneous chains

and with paper [4] for the isotropic limit of alternating chains wih> S.
For negative coupling the logarithms always egtalT leading to

vsx(c >0) = (4.39)

vsx(c <0) = (4.40)

2y
with no dependence on the spins. This is remarkable, because we remgmbérin the
same case.
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5. The isotropic model with alternating spins

In this section we present some results for the isotropic limit of the model considered above,
which we will call XXX(%, 1). On one side, there are some peculiarities in the limit- 0
(especially for negative couplings). On the other side, in the sectors with different signs of
couplings it is possible to obtain several new results yet undiscovered for the anisotropic
case.

To begin with we have to define the isotropic limit. The model has been considered in
[6], we have only to specify the normalization of coupling constants to fit with our section 2.

The BAE take the form

(Aj+§xj+i)N:_ﬁ/\j—xk+i i—1..m 5.1)
j— 5kl R A

Instead of (2.3) we define

E =c1E1+ B, — (GN — M)H (5.2)
with
M
Ei=-> a}) i=1,2 (5.3)
=1
where
a,(A) = ——. 5.4
PEF: (5.4)

Taking the limit of equations (2.4) and (2.5) we see that we have to put

. c . c
c1 = lim — and cp = lim —. (5.5)
y—0y y—0y

The TBA (for zero temperature) has been given in [6]:

€10) = —21e1p() + p €5 ()

N N H (5.6)
€M) = —2mcop(M) +prel (M) +hxeg (M) + 5
Here
*) = L
P 2 coshr
00 dp eflpl/Z (57)
h(A) =

o 21 2cosh{p/2)

As in section 3 we must distinguish between the various regions of signs when the system
(5.6) is solved. We will follow exactly the notation from section 3 above.

The solutions in the sectors (i) and (iv) are well known. While in (i) the ground state
is antiferromagnetic (1- and 2-strings) and therefore the limit of the anisotropic case, in
(iv) the ground state is ferromagnetic and hence different from the anisotropic case. This
explains why the results of section 3 for> 0 (with the replacement (5.5)) lead to the
isotropic values, while they diverge for< 0.

Now we wish to investigate, in some detail, sector (ii) with> 0, ¢, < 0. Only
real roots can be present in the ground state. The TBA (only one equation left) can be
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formulated in two equivalent ways; we shall need both.

€1(M) = —2mcrp(h) + 2 |colh(M) + h x € () + g (5.8)
ef(k) = —c1a1(A) + |c2]laz(X) — |:8()L) + 112(;»)] x€ + H. (5.9

From equation (5.9) one easily determines the region where the solution is ferromagnetic.
The integral term is always non-negative. Therefore, we have ferromagnetic behaviour
(e(r) > 0 everywhere) if the remaining function &f on the r.h.s. of equation (5.9) is
strictly positive. That is guaranteed, if it is fulfilled far= 0. Thus

—4c1+ 2|2l +H >0 (5.10)
implying
Hcrit - 4'Cl - 2|C2| (511)
in this region. For a vanishing magnetic field ferromagnetism is obtained as long as
C1 1
<= < 2. 5.12
leal ~ 2 (512)

This is just the isotropic limit of inequality (3.13). Fot = %|02| there is a phase transition

to a partially ordered state, the Fermi zone of the 1-strings stakts=ad. The Fermi radius
increases and stays finite féf 4 0 moving counter-clockwise towards the vertieglaxis

in the (c2, c1)-plane. We have strictly proven that there is no point where it reaches infinity
(for H = 0) unlessc, = 0. One can see that from equation (5.9), because fer co (i)
vanishes much slower thgm(i).

Summiarizing the facts, (ii) splits into two parts, one ferromagnetic (5.12) and one with a
partially ordered ground state whose Fermi radius varies from zero to infinity (see figure 2).
So one can say that the second couplingworks here like an external magnetic field
rendering the Fermi radius finite as it is for for the homogeneous antiferromagnetic models
with 0 < H < H,j;.

Analytical solutions of equations (5.8) or (5.9) can be obtained for large and small Fermi
radius. We start with the first and consider equation (5.8). It is identical to the TBA of
XXX(%) model except for the term with,. We therefore use the technique of [11] (see
also [12]) recasting that term (after Fourier transformation) as a suitable product. We put
as usualy(A) = e1(A + b) with €1(b) = y(0) = 0 and use the symmetry ef(1). After
Fourier transformation

f(w) = / h €“* (1) d15.13) (5.13)

o]

we write thec,-term on the r.h.s. of equation (5.8) in the foraC (w)h(w) with

C(w) = —2m|coleP. (5.14)
With the notations of [12] the solution i@-space is given by

V+(@) = 1= G1(@)C(w) + G (0) 0+ (v). (5.15)

This has to be integrated to obtain the radlusWe have carried out the first integral by
deforming it along the cut on the negative imaginary axis yielding &fos 1)

277 |c2|n/2

e (5.16)

/w(l— G4 (@)C(w) do =
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Figure 2. The phase structure of thEXX(%, 1) model. The sector without indication of
ground-state strings is ferromagnetic. Again axes are drawn broken except if they coincide with
sector borders, where they are drawn full.

Together with the second part we have the condition

2 4
H—ci2m| T leal® _ (5.17)
e b2
which determine® = b(H, c1, ¢). For its validity we have to ensure
H/ep k1 and lcal/c1 < 1 (5.18)
The free energy is calculated using TBA (e.g. see [6]):
F T (> /T T (= /T
= fo— 7/ ) In(L 4 2@/ Ty dy — 7/ ) In(L+ e2™/Tydx. (5.19)
2N 2 J_» 2 J_»

For vanishing temperature the first integral is proportional @) yielding (in leading
order) the first term in (5.20). The calculation of the second integral is more involved, after
one has made use of equation (5.6). We give only the result for the dominant terms:

F 1 . H_H ol

(5.20)

— / - _

o = o 8c172 4  4nb ' p2*
The term proportional tdd? gives xo = 1/(4c1?) which in some sense can be interpreted
as half of the value which we found on the conformal line. This is the susceptibility for

H < el € 1 (5.21)

because theh does not depend on the magnetic field. The terki/4 describes a constant
magnetization folcy| — 0, which can be found from BAE directly.

The result for|cy] < H < c1 is difficult to interpret, the limitH — 0 is not allowed
in this case.

Unfortunately we did not succeed in calculatidgfor 7 > 0, which meets severe
difficulties.

We finish the consideration of (ii) by calculating the free energy and magnetic
susceptibility for a small Fermi radius, that is close to the line of transition to ferromagnetic
behaviour. We solve equation (5.9) f&k < H,,;, with H,;, from above (5.11).
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Making an expansion in powers of the Fermi radiusve see that the integral on the
r.h.s. (except thé-term) is of power®. Therefore, we can easily determine

e1(0) = e (V) for || < b (5.22)

up to terms of poweb?.
Fromey,(b) = 0 we have

Hcrit - H
b= 5.23
16¢1 + 2¢» ( )
and
e1(0) = (16¢1 4 2¢2) (A% — bP). (5.24)

The free energy per site is given by paper | (3.14)

F 3 2 1
- =" = (H,, - H)%? 5.25
2N 4" x f16c1+2cz( r = H) (5.25)
and hence
3 1 1

- Z\/165‘1+2C2\/Hcri1 _H.
This is to be compared with the same value for the UQIJHIX(%) Heisenberg model

2 1 1
XXxXx = p 16¢ VHos — H
in our normalization of coupling constant. That result is, of course, not the dimit 0 of
equation (5.26), because the change in paper | (3.14) must also be taken into account.

At the end of this section we shortly comment on sector (iii). It is treated in the same
way as sector (ii). Equations (5.8) and (5.9) are replaced by

(5.26)

X

(5.27)

7T |clA

sinh(r ) (2 sinh(zr 1)

€ (1) = lerlaz(h) — c2(a1(h) + az(1)) — <5(k) +

H
€2(A) = —2meop(M) + + h(A)) *€y + - (5.28)

2
2a(1) + as(X)
2

The critical magnetic field can be read off from equation (5.9):

) xe; +2H.  (5.29)

Herir = gCZ — leal. (530)
For vanishing field we have ferromagnetic behaviour as long as

leal > 8 (5.31)
Cc2 3
(compare equation (3.21)).

The power expansion ihis rather simple while the Wiener—Hopf calculation for latge
is a little bit more involved; therefore, it is not carried out here. The results will qualitatively
agree with those from above.

The phase structure is depicted in figure 2. We have four sectors and two singular
lines (the positive axes). Three of the sectors show critical behaviour without mass gap;
one of them is truly antiferromagnetic with infinite Fermi zone. The remaining one is
ferromagnetic.
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6. Conclusions

We have considered thKXZ(%, 1) model with strictly alternating spins in one part of

its critical region of anisotropy 06X y < n/2. We expect a similar but not identical
behaviour in the other part/2 < y < = because there is ho obvious symmetry between
the two regions. The model contains two parameters, anisotropy and the ratio of coupling
constants, and shows a rich physical structure. Except for the isotropic model (where we
have a ferromagnetic region) we found an antiferromagnetic ground state and no mass gap.
So the model behaves critically, but it is conformally invariant only on a fine ¢ and

also in a large sector including this line and having at least one negative coupling. Around
that line there exist sectors where the ground state does not dependseparated from

each other by sectors where it depends cruciallyyont is remarkable that two kinds of
sectors are also different with respect to the occurrence of finite Fermi zones.

The sectors around the line with equal couplings are well studied now, their ground
states and excitations have been established. At thecline¢ we have calculated low-
temperature heat capacity and magnetic susceptibility. Different signs of couplings cause
very different behaviour, e. g. different central charges (1 or 2) and different behaviour of
susceptibilities.

A subsequent paper will deal with finite size corrections in those sectors. We expect
the standard results in the conformal case, while, apart from that, conformal symmetry does
not make any prediction.

The sectors with finite Fermi zones require further treatment, including numerical
studies. The same applies to heat capacity and susceptibility for different coupling constants.
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