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Ground-state structure and low temperature behaviour of
an integrable chain with alternating spins

B-D Dörfel† and St Meißner‡
Institut für Physik, Humboldt-Universität, Theorie der Elementarteilchen, Invalidenstraße 110,
10115 Berlin, Germany

Received 8 May 1996

Abstract. In this paper we continue the investigation of an anisotropic integrable spin chain,
consisting of spinss = 1 and s = 1

2 , started in our paper [1]. The thermodynamic Bethe
ansatz is analysed especially for the case, when the signs of the two couplingsc̄ and c̃ differ.
For the conformally invariant model (c̄ = c̃) we have calculated heat capacity and magnetic
susceptibility at low temperature. In the isotropic limit our analysis is carried out further and
susceptibilities are calculated near phase transition lines (atT = 0).

1. Introduction

Since the pioneering work of de Vega and Woynarovich [2] for the construction of models
with alternating spins quite a lot of interesting generalizations have been presented [3–5].
Otherwise, not many results were obtained concerning the physical structure of the models,
e.g. the low temperature behaviour of heat capacity and magnetic susceptibility. Even the
structure of the ground state in the framework of the Bethe ansatz is not fully understood
for the original model.

In this paper, therefore, we continue our investigation of theXXZ( 1
2, 1) model with

strictly alternating spins started in [1], which will be referred to as paper I throughout.
In section 3 the thermodynamic Bethe ansatz (TBA) is analysed for zero temperature

in different regions of coupling constants. Section 4 deals with the conformally invariant
model, where the low temperature behaviour can be determined analytically. In section 5 we
derive some new results for the isotropic caseXXX( 1

2, 1). Our conclusions are contained
in section 6.

2. Definition of the model

We refer the reader to paper I and [2] for the basics of the model; we will follow the
definitions and notations of paper I here.

Our Hamiltonian of a spin chain of length 2N is given by

H(γ ) = c̄H̄(γ ) + c̃H̃(γ ) − HSz (2.1)

with the two real coupling constants̄c and c̃. The anisotropy parameterγ is limited to
0 < γ < π/2.
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For convenience we repeat the Bethe ansatz equations (BAE) and the magnon energies:(
sinh(λj + i γ

2 )

sinh(λj − i γ

2 )

sinh(λj + iγ )

sinh(λj − iγ )

)N

= −
M∏

k=1

sinh(λj − λk + iγ )

sinh(λj − λk − iγ )
j = 1 . . . M (2.2)

E = c̄Ē + c̃Ẽ −
(

3N

2
− M

)
H (2.3)

Ē = −
M∑

j=1

2 sinγ

cosh 2λj − cosγ
(2.4)

Ẽ = −
M∑

j=1

2 sin 2γ

cosh 2λj − cos 2γ
. (2.5)

3. Thermodynamic Bethe ansatz and the ground state for different signs of the
coupling constants

In section 3 of paper I the TBA was considered for special values ofγ = π/µ, µ integer
andµ > 3. We also argued, that the ground state structure is uniform in our wholeγ -region,
while we expect possible changes for the excitations at theγ -points above. We therefore
use the results of paper I for the possible appearance of strings in the ground state according
to the different regions of couplings.

For completeness we quote in all cases of the TBA, equations (3.19) of paper I. We
found it more convenient to useλ-space instead of Fourier transformation, which can be
easily derived from our equations below. We then recall

f ′(λ, n,±1) = ± 2 sinnγ

cosh 2λ ∓ cosnγ
. (3.1)

For shortness we drop the magnetic field in the TBA, it can be added later without any
problem.

Now we analyse the zero-temperature TBA in the various regions of signs forc̄ and c̃.
(i) c̄ > 0, c̃ > 0.

ε+
1 (λ) = −c̄f ′(λ, 1, 1) − c̃f ′(λ, 2, 1) −

[
δ(λ) + f ′(λ, 2, 1)

2π

]
∗ ε−

1

−
[
f ′(λ, 1, 1) + f ′(λ, 3, 1)

2π

]
∗ ε−

2 (3.2)

ε+
2 (λ) = −c̄f ′(λ, 2, 1) − c̃[f ′(λ, 1, 1) + f ′(λ, 3, 1)] −

[
f ′(λ, 1, 1) + f ′(λ, 3, 1)

2π

]
∗ ε−

1

−
[
δ(λ) + 2f ′(λ, 2, 1) + f ′(λ, 4, 1)

2π

]
∗ ε−

2 (3.3)

with the convolutiona ∗ b(λ) defined as

a ∗ b(λ) =
∫ ∞

−∞
a(λ − µ)b(µ) dµ. (3.4)

The solution has already been given in [2], where the excitations have also been found.
(ii) c̄ > 0, c̃ < 0.
We expect(1, +) and(1, −) strings

ε+
1 (λ) = −c̄f ′(λ, 1, 1) − c̃f ′(λ, 2, 1) −

[
δ(λ) + f ′(λ, 2, 1)

2π

]
∗ ε−

1
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+
[
f ′(λ, 2, −1)

2π

]
∗ ε−

−1 (3.5)

ε+
−1(λ) = −c̄f ′(λ, 1, −1) − c̃f ′(λ, 2, −1) −

[
f ′(λ, 2, −1)

2π

]
∗ ε−

1

−
[
δ(λ) − f ′(λ, 2, 1)

2π

]
∗ ε−

−1. (3.6)

At first it might be expected that the solution is given when both strings are distributed with
infinite Fermi radius. We have determined this state and calculated its energy, but it is not
the ground state. The same applies to the state with only(1, +) strings. That can already
be seen superficially after obtainingSz 6= 0 for it.

The situation changes when only(1, −) strings are considered. This is due to the fact,
that the last two terms in equation (3.5) are definitely non-negative while this is not the
case in equation (3.6), where the term after theδ-function spoils the argument.

Equation (3.6) forε−
1 (λ) ≡ 0 has been already solved in paper I.

ε−
−1(λ) = πc̄

π − γ

1

cosh(πλ/(π − γ ))
+ 4πc̃

π − γ

cos(πγ /2(π − γ )) cosh(πλ/(π − γ ))

cosh(2πλ/(π − γ )) + cos(πγ /(π − γ ))
.

(3.7)

Introducing the functiong(λ, α)

g(λ, α) = 4π

π − γ

cos(πα/2(π − γ )) cosh(πλ/(π − γ ))

cosh(2πλ/(π − γ )) + cos(πα/(π − γ ))
(3.8)

the solution of equation (3.5) can be written as

ε+
1 (λ) = −c̄g(λ, π/2 − γ ) − c̃g(λ, π/2 − 3γ /2). (3.9)

For consistency it is necessary to have

ε−
−1(λ) 6 0 and ε+

1 (λ) > 0. (3.10)

Both conditions specify the region ofc̄ and c̃ where our solution is valid.
We start withε1(λ)

ε1(0) = − 2π

π − γ

[
c̄

cos(π(π − 2γ )/2(π − γ ))
+ c̃

cos(π(π − 3γ )/2(π − γ ))

]
> 0. (3.11)

Considering the asymptotics forλ → ∞ one has

− 2π

π − γ

[
c̄ cos

π(π − 2γ )

2(π − γ )
+ c̃ cos

π(π − 3γ )

2(π − γ )

]
> 0. (3.12)

We now assume that the two necessary conditions (3.11) and (3.12) are also sufficient to
fulfill the second part of (3.10).

The smaller of the ratios of the two cosine functions is then the upper limit ofc̄/|c̃|.
Hence after elementary recasting

c̄

|c̃| 6 1

2 cos(πγ /2(π − γ ))
0 6 γ 6 2π

5
c̄

|c̃| 6 2 cos
πγ

2(π − γ )

2π

5
6 γ <

π

2
.

(3.13)

We treatε−
−1(λ) in the same way obtaining

c̄

|c̃| 6 2 cos
πγ

2(π − γ )
. (3.14)
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Figure 1. The phase structure of theXXZ( 1
2 , 1) model forγ = π/3. The ground state strings

are indicated for the four different sectors. The arrows symbolize the decreasing Fermi radii of
the corresponding strings. Broken lines are coordinate axes. Where axes are drawn full they
coincide with sector borders.

Now it is not difficult to show that condition (3.14) is fulfilled, when (3.13) holds.
Therefore, our solution, a sea of(1, −) strings with infinite Fermi zone, is the ground-

state configuration as long as the inequalities (3.13) hold. In the(c̃, c̄)-plane this is an open
triangle formed by the negativẽc-axis and the straight line given by relation (3.13) when
the equality holds (see figure 1). Forγ → 0 (isotropic case, see section 5) this isc̄/|c̃| = 1

2.
For increasingγ the region first enlarges untilγ = 2π/5 and then shrinks and approaches
the c̃-axis whenγ → π/2.

Above that line we still expect(1, −) strings but together with(1, +) strings. So
moving counter-clockwise from the positivēc-axis towards that line the Fermi radius of
the strings with positive parity shrinks from infinity to zero, while the radius for the strings
with negative parity is infinite, as can easily be seen from paper I (3.17), which implies
in the caseH = 0, that its energy function does not change sign and is therefore strictly
non-positive in the limitT → 0.

It is remarkable that a finite Fermi zone occurs without the presence of a magnetic field.
Apparently the second coupling plays the role of an external field.

(iii) c̄ < 0, c̃ > 0.
We expect(2, +) and(1, −) strings

ε+
2 (λ) = −c̄f ′(λ, 2, 1) − c̃[f ′(λ, 1, 1) + f ′(λ, 3, 1)]

−
[
δ(λ) + 2f ′(λ, 2, 1) + f ′(λ, 4, 1)

2π

]
∗ ε−

2

+
[
f ′(λ, 1, −1) + f ′(λ, 3, −1)

2π

]
∗ ε−

−1 (3.15)

ε+
−1(λ) = −c̄f ′(λ, 1, −1) − c̃f ′(λ, 2, −1) −

[
f ′(λ, 1, −1) + f ′(λ, 3, −1)

2π

]
∗ ε−

2
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−
[
δ(λ) − f ′(λ, 2, −1)

2π

]
∗ ε−

−1. (3.16)

We have found that qualitatively the same arguments apply as in case (ii) above. Thus, we
consider first only(1, −) strings with infinite Fermi radius. Now it is necessary to assure
ε+

2 (λ) > 0 in addition to the first condition of (3.10). Instead of condition (3.14) it gives
now

|c̄|
c̃

> 2

cos(πγ /2(π − γ ))
(3.17)

which guaranteesε−
−1(λ) 6 0. When calculatingε+

2 one has to be careful when the Fourier
transformation off ′(λ, 3, −1) is to be taken. It vanishes forγ = π/3 and changes the sign
after that point has been passed. Finally one obtains

ε+
2 (λ) = −c̄g(λ, π/2 − 3γ /2) − c̃g(λ, π/2 − γ ) − c̃g(λ, π/2 − 2γ )

0 < γ < π/3

ε+
2 (λ) ≡ 0 π/3 < γ < π/2.

(3.18)

There is no contradiction with paper I (3.24), which gives two different values forγ < π/3
andγ = π/3, while largerγ -values were not considered there.

Let us first consider 0< γ < π/3. Then from equation (3.17) we have the two
conditions

− 2π

π − γ

(
c̄

cos(π(π − 3γ )/2(π − γ ))
+ c̃

cos(π(π − 2γ )/2(π − γ ))

+ c̃

cos(π(π − 4γ )/2(π − γ ))

)
> 0

− 2π

π − γ

(
c̄ cos

π(π − 3γ )

2(π − γ )
+ c̃ cos

π(π − 2γ )

2(π − γ )
+ c̃ cos

π(π − 4γ )

2(π − γ )

)
> 0.

(3.19)

Straightforward calculation gives

|c̄|
c̃

> 2 cos
πγ

2(π − γ )
and

|c̄|
c̃

> 8 cos3(πγ /2(π − γ ))

4 cos2(πγ /2(π − γ )) − 1
. (3.20)

The upper term of the r.h.s. is always smaller than the r.h.s. of (3.17). Hence we have
to find the maximum of the two r.h.s. of formula (3.20) and (3.17). In ourγ -region the
second inequality of (3.20) is the most restrictive one. Putting things together we find for
the region with(1, −) strings only

|c̄|
c̃

> 8 cos3(πγ /2(π − γ ))

4 cos2(πγ /2(π − γ )) − 1
0 < γ 6 π

3
|c̄|
c̃

> 2

cosπγ/2(π − γ )

π

3
6 γ <

π

2
.

(3.21)

The(c̃, c̄)-plane is an open triangle formed by the negativec̄-axis and the straight line given
by relation (3.21) when the equality holds (see figure 1). Forγ → 0 (isotropic case, see
section 5) this is|c̄|/c̃ = 8

3. For risingγ the region shrinks and approaches thec̃-axis when
γ → π/2.

Above that region we expect(1, −) strings together with(2, +) strings the latter with
finite Fermi radius. The picture resembles region (ii) above.

(iv) c̄ 6 0, c̃ 6 0.
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Here the vacuum is formed by(1, −) strings only.

ε+
−1(λ) = −c̄f ′(λ, 1, −1) − c̃f ′(λ, 2, −1) −

[
δ(λ) + f ′(λ, 2, −1)

2π

]
∗ ε−

−1. (3.22)

This region was studied in paper I where the excitations have also been found.
(v) c̄ = 0, c̃ > 0.
(vi) c̄ > 0, c̃ = 0.
We add nothing new to both cases considered earlier in [2] and [6].
Now we can summarize our results about the the ground state structure for different

values of coupling constants. There are four regions and two singular lines (v) and (vi).
In the two regions with equal signs (which contain the linec̄ = c̃) the ground state is
independent of the values ofc̄ and c̃. Here also the Fermi radii are infinite. There is no
mass gap in the excitation spectrum.

In the two other regions infinite and finite Fermi radii occur and the concrete structure
of the ground state depends on the ratioc̄/c̃. Nevertheless, we expect them to be gapless
also.

The picture is not fully symmetric, because region (i) is separated from all others by a
highly degenerate ground state on both lines. This is connected with the fact that one sort
of string has to disappear at once.

Finally, the model shows an antiferromagnetic behaviour everywhere (for vanishing
magnetic field) as long asγ > 0. The isotropic case is considered in section 5.

4. Calculation of the low-temperature behaviour in the case ¯c = c̃

In this section we calculate the low-temperature heat capacity and magnetic susceptibility
for vanishing magnetic field in the casec̄ = c̃.

We therefore go back to equations (3.10)–(3.13) of paper I whereT is considered to be
small but finite. Instead of [6] where the free energy was calculated, we use a method due
to Wiegmann [8], which for our purpose was used by Babujian and Tsvelick [9] to obtain
the results for theXXZ(S) model from entropy and polarization. To explore this method
it is necessary to ensureγ < π/3, γ = π/µ; µ integer.

We will present in some detail the casec = c̄ = c̃ < 0 while for c > 0 we mention
only the necessary changes and the final results.

For c < 0 we have

εj > 0 j = 1 . . . µ − 1

εµ 6 0

and

ρj → 0 for T → 0 if j = 1 . . . µ − 1

ρ̃µ → 0 for T → 0.

Our aim is now to recast BAE and TBAE in a form where energies and densities are given
through their zero temperature limitsε(0)

µ andε
(0)
j and values vanishing forT → 0, i.e. the

energy functions ln(1 + exp(−εj /T )), j = 1 . . . µ − 1 and ln(1 + exp(εµ/T )).
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The main step is the multiplication byA−1
µµ which after some algebra leads to the systems

εµ = Hµ

2
ε(0)
µ −

µ−1∑
k=1

Qk ∗ (−1)r(k)T ln
(

1 + exp
(
−εk

T

))
− K ∗ (−1)r(µ)T ln

(
1 + exp

(εµ

T

))
εj = δjµ−1

Hµ

2
ε

(0)
j +

µ−1∑
k=1

Bjk ∗ (−1)r(k)T ln
(

1 + exp
(
−εk

T

))
− K ∗ (−1)r(µ)T ln

(
1 + exp

(εµ

T

))
(4.1)

and

− (−1)r(µ)(ρ̃µ + ρµ) = 1

2πc
ε(0)
µ −

µ−1∑
k=1

Qk ∗ ρk + K ∗ ρ̃µ

− (−1)r(j)(ρ̃j + ρj ) = 1

2πc
ε

(0)
j +

µ−1∑
k=1

Bjk ∗ ρk + Qj ∗ ρµ

(4.2)

where we have introduced

K(λ) = −Tµµ ∗ A−1
µµ(λ)

Qk(λ) = −Tµk ∗ A−1
µµ(λ)

Bjk(λ) = (Tjk + Tjµ ∗ A−1
µµ ∗ Tµk)(λ).

(4.3)

Now we want to perform a shift of theλ-variable in the functionsεj (λ) in the following
way:

ϕj (λ) = 1

T
εj

(
λ + a ln

T

2π |c|
)

(4.4)

where the constanta will be determined yet. We choose it in a way thatϕj (λ) for
λ → ∞ has a finite limit if T → 0. From paper I (3.24) we can see, that for all
ε

(0)
j (λ) ∼ exp(πλ/(π − γ )) if λ → ∞. Thereforea = −(π − γ )/γ .

After that shift the system (4.1) is rewritten as

ϕµ = Hµ

2T
−

µ−1∑
k=1

Qk ∗ (−1)r(k) ln(1 + exp(−ϕk)) − K ∗ (−1)r(µ) ln(1 + exp
(
ϕµ

)
)

+ 1

π − γ
exp

(
− πλ

π − γ

) [
1 + 2 cos

π

2(µ − 1)

]
ϕj = δjµ−1

Hµ

2T
+

µ−1∑
k=1

Bjk ∗ (−1)r(k) ln(1 + exp(−ϕk))

− K ∗ (−1)r(µ) ln(1 + exp
(
ϕµ

)
)

+ 2

π − γ
exp

(
− πλ

π − γ

) [
cos

(µ − j − 1)π

2(µ − 1)
+ cos

(µ − j)π

2(µ − 1)

+ cos
(µ − j − 1)π

2(µ − 2)

]
.

(4.5)

The system (4.2) is treated analogously.
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After differentiating equation (4.5) one obtains the important relations

ρj

(
λ − µ − 1

µ
ln

T

2π |c|
)

= (−1)r(j) π − γ

2π2|c|T
∂

∂λ
ln(1 + exp(−ϕj ))

ρ̃j

(
λ − µ − 1

µ
ln

T

2π |c|
)

= −(−1)r(j) π − γ

2π2|c|T
∂

∂λ
ln(1 + exp(ϕj ))

(4.6)

for j = 1 . . . µ.
These relations are necessary to make the appropriate substitutions of variables in the

integrals forS andSz. No such relations are expected as soon asc̄ 6= c̃.
The starting point for the heat capacity calculation is the expression for the entropy

S

N
=

µ∑
j=1

∫ ∞

−∞
dλ

[
ρj ln

(
1 + ρ̃j

ρj

)
+ ρ̃j ln

(
1 + ρj

ρ̃j

)]
. (4.7)

Using symmetry and̃ρj/ρj = eεj /T we have

S

N
= 2

µ∑
j=1

∫ ∞

0
dλ [ρj ln(1 + eεj /T ) + ρ̃j ln(1 + e−εj /T )]. (4.8)

For T → 0 the main contribution to the integral comes fromλ � 1.
After performing the shift (4.4) and using relations (4.6) the entropy becomes

S

N
= π − γ

π2|c|
µ∑

j=1

(−1)r(j)

∫ ∞

µ−1
µ

ln
(

T
2π |c|

) dλ

[
∂

∂λ
ln(1 + e−ϕj ) ln(1 + eϕj )

+ ∂

∂λ
ln(1 + eϕj ) ln(1 + e−ϕj )

]
. (4.9)

We are interested only in the leading order for vanishing temperature. Therefore we can
substitute the lower limit by−∞ (both integrals converge).

We will see in a moment that the remaining integral is even independent ofT .
Now it is straightforward to change the variable in the way

x = 1

1 + eϕj
≡ f (ϕj ) (4.10)

for every integral in the sum (note the change in the definition of the functionf in
equation (3.18) of paper I).

In final form

S

N
= −π − γ

π2|c|
µ∑

j=1

(−1)r(j)

∫ f (ϕ+
j )

f (ϕ−
j )

dx

[
ln x

1 − x
+ ln(1 − x)

x

]
(4.11)

with ϕ±
j = ϕj (±∞).

The integral is given by the functionγ (a, b) already introduced in [9] from where the
necessary special values have also been taken.

γ (a, b) =
∫ b

a

dx

[
ln x

1 − x
+ 1

x
ln(1 − x)

]
. (4.12)

Following the standard procedure [8] it is more convenient to use another form of the TBAE
to determineϕ±

j . They differ from those of theXXZ(S) model [9] in the terms with the
coupling constants only. It is the system (3.17) from paper I.
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After the shift it takes the form

ϕ1(λ) = −s ∗ ln f (ϕ2)(λ) + |c| exp

(
− πλ

π − γ

)
ϕj (λ) = −s ∗ ln[f (ϕj+1)f (ϕj−1)](λ) + |c| exp

(
− πλ

π − γ

)
δj2

ϕµ−1(λ) = Hµ

2T
− s ∗ ln f (ϕµ−2)(λ)

ϕµ(λ) = Hµ

2T
+ s ∗ ln f (ϕµ−2)(λ).

(4.13)

For λ → −∞ the inhomogeneous terms generate a solution of the form

ϕ−
j = +∞ j = 1 . . . µ − 1

ϕ−
µ = −∞ (4.14)

which implies

f (ϕ−
j ) = 0 j = 1 . . . µ − 1

f (ϕ−
µ ) = 1.

(4.15)

For λ → ∞ the free terms can be neglected, and thus the solution is given in [9]

f (ϕ+
j ) =

[
sinh(H/2T )

sinh(H(j + 1)/2T )

]2

ϕ+
µ−1 = Hµ

2T
+ ln

[
sinh(H(µ − 1)/2T )

sinh(H/2T )

]
ϕ+

µ = Hµ

2T
− ln

[
sinh(H(µ − 1)/2T )

sinh(H/2T )

]
.

(4.16)

For H → 0 then

f (ϕ+
j ) = 1

(j + 1)2
f (ϕ+

µ−1) = 1

µ
f (ϕ+

µ ) = 1 − 1

µ
. (4.17)

We mention that the above solution does not depend on the sign of the coupling constant.
The consequences of that fact will be considered below.

Now we can calculate relation (4.11):

S

N
= (π − γ )T

π2|c|
{ µ−2∑

j=1

γ

(
1

(j + 1)2
, 0

)
+ γ

(
1

µ
, 0

)
− γ

(
1 − 1

µ
, 1

) }

= (π − γ )T

π2|c|
{ µ−2∑

j=1

γ

(
1

(j + 1)2
, 0

)
+ 2γ

(
1

µ
, 0

) }
= (π − γ )T

π2|c|
{

1

3
π2

}
= (π − γ )T

3|c| . (4.18)

Finally, for the heat capacity per site (of a chain with 2N sites)

C = π − γ

6|c| T . (4.19)
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The polarization is obtained in the same way as in [9] starting with the basic formula

Sz

N
= µ

2

{ ∫ ∞

−∞
dλ ρ̃µ−1(λ) −

∫ ∞

−∞
dλ ρµ(λ)

}
(4.20)

which for our model takes the same form. Using symmetry and the shift gives

Sz

N
= 2

µ

2

{ ∫ ∞

0
dλ ρ̃µ−1(λ) −

∫ ∞

0
dλ ρµ(λ)

}
= µ

{
−

∫ ∞

−∞

(π − γ )T

2π2|c|
∂

∂λ
ln(1 + eϕµ−1) dλ

−
∫ ∞

−∞

(π − γ )T

2π2|c|
∂

∂λ
ln(1 + e−ϕµ) dλ

}
= µ(π − γ )T

2π2|c|

{
ln

[
1 + exp(−ϕ+

µ )

1 + exp(ϕ+
µ−1)

]
− ln

[
1 + exp(−ϕ−

µ )

1 + exp(ϕ−
µ−1)

]}
. (4.21)

For the first term we use relations (4.16) withH � T .

ϕ+
µ−1 = Hµ

2T
+ ln

[
exp(H(µ − 1)/2T )

exp(H/2T )

]
= H(µ − 1)

T

ϕ+
µ = Hµ

2T
− ln

[
exp(H(µ − 1)/2T )

exp(H/2T )

]
= H

T
.

(4.22)

and hence

1 + exp(ϕ+
µ−1) = exp

(
H(µ − 1)

T

)
1 + exp(−ϕ+

µ ) = 1.

(4.23)

In the second term (4.14) must be completed by corrections containing the leading term in
H

ln

[
1 + exp(−ϕ−

µ )

1 + exp(ϕ−
µ−1)

]
∼= −ϕ−

µ − ϕ−
µ−1 = −Hµ

T
. (4.24)

Putting things together

Sz

N
= µ

(π − γ )H

2π2|c| (4.25)

and finally for the susceptibility

χ = µ − 1

4π |c| = π − γ

4πγ |c| . (4.26)

Now we perform the calculation for̄c = c̃ = c > 0. We will list only the necessary changes
in the calculation, induced by the sign of the coupling constant. Forc > 0 we have

ε1, ε2 6 0

εj > 0 j = 3 . . . µ.

The shift in equation (4.4) must now be taken asa = −π/γ according to the asymptotics
of the ε

(0)
j . Instead of equation (4.6) we have then

ρj

(
λ − µ ln

T

2πc

)
= (−1)r(j) γ

2π2c
T

∂

∂λ
ln(1 + exp(−ϕj ))

ρ̃j

(
λ − µ ln

T

2πc

)
= −(−1)r(j) γ

2π2c
T

∂

∂λ
ln(1 + exp(ϕj )).

(4.27)
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Note the change of the overall sign.
Consequently, (4.11) is modified

S

N
= − γ

π2c

µ∑
j=1

(−1)r(j)

∫ f (ϕ+
j )

f (ϕ−
j )

dx

[
ln x

1 − x
+ ln(1 − x)

x

]
. (4.28)

The change in the system (4.13) is obviously the replacement of|c| by −c. As already
mentioned above, there are no changes in the solutions forλ → ∞. For λ → −∞ the
solution is contained in [9]:

f (ϕ−
1 ) = f (ϕ−

2 ) = 1

f (ϕ−
j ) =

[
sinh((Hµ/2T )1/(µ − 2))

sinh((Hµ/2T )(j − 1)/(µ − 2))

]2

j = 3 . . . µ − 2

ϕ−
µ−1 = Hµ

2T
+ ln

[
sinh((Hµ/2T )(µ − 3)/(µ − 2))

sinh(Hµ/2T )1/(µ − 2)

]
ϕ−

µ = Hµ

2T
− ln

[
sinh((Hµ/2T )(µ − 3)/(µ − 2))

sinh(Hµ/2T )1/(µ − 2)

]
.

(4.29)

For H → 0 this implies

f (ϕ−
j ) = 1

(j − 1)2
j = 3 . . . µ − 2

f (ϕ−
µ−1) = 1

µ − 2
f (ϕ−

µ ) = 1 − 1

µ − 2
.

(4.30)

Now we are ready to find the sum in equation (4.18)
µ∑

j=1

(−1)r(j)γ (ϕ−
j , ϕ+

j ) = γ (1, 1
4) + γ (1, 1

9)

+
µ−2∑
j=3

γ

(
1

(j − 1)2
,

1

(j + 1)2

)
+ γ

(
1

µ − 2
,

1

µ

)
− γ

(
1 − 1

µ − 2
, 1 − 1

µ

)

= γ (1, 1
4) + γ (1, 1

9t) +
µ−4∑
j=1

γ

(
1

(j + 1)2
, 0

)

−
µ−2∑
j=1

γ

(
0,

1

(j + 1)2

)
+ γ (0, 1

4) + γ (0, 1
9) + 2γ

(
1

µ − 2
,

1

µ

)

= 2γ (1, 0) + π2

3
− 2γ

(
1

µ − 2
, 0

)
+ 2γ

(
0,

1

µ

)
− π2

3
+ 2γ

(
1

µ − 2
,

1

µ

)
= 2γ (1, 0)

= 2π2

3
. (4.31)

Finally,

C = γ T

3c
. (4.32)

Polarization (4.21) is modified

Sz

N
= T

2πc

{
ln

[
1 + exp(ϕ+

µ−1)

1 + exp(−ϕ+
µ )

]
− ln

[
1 + exp(ϕ−

µ−1)

1 + exp(−ϕ−
µ )

]}
. (4.33)
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Relations (4.23) are still valid. From equation (4.29) we obtain

ϕ−
µ−1 = Hµ

T

µ − 3

µ − 2
and ϕ−

µ = Hµ

T

1

µ − 2
. (4.34)

Therefore,

Sz

N
= T

2πc

{
H

T

[
µ − 1 − µ + µ

µ − 2

]}
= T

2πc

H

T

2

µ − 2
(4.35)

and finally

χ = 1

2πc

1

µ − 2
= 1

2πc

γ

π − 2γ
. (4.36)

Now we have to compare our results with those of other authors who have presented
calculations especially forc > 0. To avoid ambiguities we multiply heat capacity and
susceptibility by the speed of soundvs , afterwards the result becomes unique, not depending
on the normalization of the coupling constant.

From [1] and [2] we can derive

vs = 2cπ

γ
for c > 0 and vs = 2|c|π

π − γ
for c < 0. (4.37)

We have also used our method to obtain the values for the two homogeneous systems (s = 1
2

ands = 1). At least, the susceptibility fors = 1 has not been calculated before in the case
of negative coupling. (Heat capacity was determined in paper [10].) In all cases considered
we found, for the heat capacity, the conformal result

Cvs = cvT π

3
(4.38)

wherecv is the central charge of the Virasoro algebra, which is equal to one for negative
coupling.

It is remarkable that formula (4.11) is preserved, because (rewritten for the entropy per
site) the factor in front of the sum is always equal to 1/(vsπ) (apart from the sign) while
the sum measures the central charge (being equal toπ2cv/3).

The form of equation (4.21) for the polarization per site can be understood in the same
way. The factor in front of the logarithms is alwaysT/(2vsγ ), while for different signs
and spins the logarithms also differ.

For positive coupling they yield the result 2S ′/(π − 2γ S ′)H/T whereS ′ is the larger
of the two spins (our model hasS ′ = 1), which may be equal.

Therefore

vsχ(c > 0) = S ′

π − 2S ′γ
(4.39)

which is consistent with all former results, especially with paper [9] for homogeneous chains
and with paper [4] for the isotropic limit of alternating chains withS ′ > S.

For negative coupling the logarithms always equalH/T leading to

vsχ(c < 0) = 1

2γ
(4.40)

with no dependence on the spins. This is remarkable, because we remembercv = 1 in the
same case.
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5. The isotropic model with alternating spins

In this section we present some results for the isotropic limit of the model considered above,
which we will call XXX( 1

2, 1). On one side, there are some peculiarities in the limitγ → 0
(especially for negative couplings). On the other side, in the sectors with different signs of
couplings it is possible to obtain several new results yet undiscovered for the anisotropic
case.

To begin with we have to define the isotropic limit. The model has been considered in
[6], we have only to specify the normalization of coupling constants to fit with our section 2.

The BAE take the form(
λj + i

2

λj − i
2

λj + i

λj − i

)N

= −
M∏

k=1

λj − λk + i

λj − λk − i
j = 1 . . . M. (5.1)

Instead of (2.3) we define

E = c1E1 + c2E2 − ( 3
2N − M)H (5.2)

with

Ei = −
M∑

j=1

ai(λj ) i = 1, 2 (5.3)

where

an(λ) = n

λ2 + n2

4

. (5.4)

Taking the limit of equations (2.4) and (2.5) we see that we have to put

c1 = lim
γ→0

c̄

γ
and c2 = lim

γ→0

c̃

γ
. (5.5)

The TBA (for zero temperature) has been given in [6]:

ε1(λ) = −2πc1p(λ) + p ∗ ε+
2 (λ)

ε2(λ) = −2πc2p(λ) + p ∗ ε+
1 (λ) + h ∗ ε+

2 (λ) + H

2
.

(5.6)

Here

p(λ) = 1

2 coshπλ

h(λ) =
∫ ∞

−∞

dp

2π

e−|p|/2

2 cosh(p/2)
eipλ.

(5.7)

As in section 3 we must distinguish between the various regions of signs when the system
(5.6) is solved. We will follow exactly the notation from section 3 above.

The solutions in the sectors (i) and (iv) are well known. While in (i) the ground state
is antiferromagnetic (1- and 2-strings) and therefore the limit of the anisotropic case, in
(iv) the ground state is ferromagnetic and hence different from the anisotropic case. This
explains why the results of section 3 forc > 0 (with the replacement (5.5)) lead to the
isotropic values, while they diverge forc < 0.

Now we wish to investigate, in some detail, sector (ii) withc1 > 0, c2 < 0. Only
real roots can be present in the ground state. The TBA (only one equation left) can be
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formulated in two equivalent ways; we shall need both.

ε1(λ) = −2πc1p(λ) + 2π |c2|h(λ) + h ∗ ε+
1 (λ) + H

2
(5.8)

ε+
1 (λ) = −c1a1(λ) + |c2|a2(λ) −

[
δ(λ) + a2(λ)

2π

]
∗ ε−

1 + H. (5.9)

From equation (5.9) one easily determines the region where the solution is ferromagnetic.
The integral term is always non-negative. Therefore, we have ferromagnetic behaviour
(ε(λ) > 0 everywhere) if the remaining function ofλ on the r.h.s. of equation (5.9) is
strictly positive. That is guaranteed, if it is fulfilled forλ = 0. Thus

− 4c1 + 2|c2| + H > 0 (5.10)

implying

Hcrit = 4c1 − 2|c2| (5.11)

in this region. For a vanishing magnetic field ferromagnetism is obtained as long as

0 6 c1

|c2| 6 1

2
. (5.12)

This is just the isotropic limit of inequality (3.13). Forc1 = 1
2|c2| there is a phase transition

to a partially ordered state, the Fermi zone of the 1-strings starts atλ = 0. The Fermi radius
increases and stays finite forH 6= 0 moving counter-clockwise towards the verticalc1-axis
in the (c2, c1)-plane. We have strictly proven that there is no point where it reaches infinity
(for H = 0) unlessc2 = 0. One can see that from equation (5.9), because forλ → ∞ h(λ)

vanishes much slower thanp(λ).
Summarizing the facts, (ii) splits into two parts, one ferromagnetic (5.12) and one with a

partially ordered ground state whose Fermi radius varies from zero to infinity (see figure 2).
So one can say that the second couplingc2 works here like an external magnetic field
rendering the Fermi radius finite as it is for for the homogeneous antiferromagnetic models
with 0 < H < Hcrit .

Analytical solutions of equations (5.8) or (5.9) can be obtained for large and small Fermi
radius. We start with the first and consider equation (5.8). It is identical to the TBA of
XXX( 1

2) model except for the term withc2. We therefore use the technique of [11] (see
also [12]) recasting that term (after Fourier transformation) as a suitable product. We put
as usualy(λ) = ε1(λ + b) with ε1(b) = y(0) = 0 and use the symmetry ofε1(λ). After
Fourier transformation

f (ω) =
∫ ∞

−∞
eiωλf (λ) dλ5.13) (5.13)

we write thec2-term on the r.h.s. of equation (5.8) in the form−C(ω)h(ω) with

C(ω) = −2π |c2|e−iωb. (5.14)

With the notations of [12] the solution inω-space is given by

y+(ω) = (1 − G+(ω))C(ω) + G+(ω)Q+(ω). (5.15)

This has to be integrated to obtain the radiusb. We have carried out the first integral by
deforming it along the cut on the negative imaginary axis yielding (forb � 1)∫ ∞

−∞
(1 − G+(ω))C(ω) dω = 2π |c2|

√
2

b2
. (5.16)
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Figure 2. The phase structure of theXXX( 1
2 , 1) model. The sector without indication of

ground-state strings is ferromagnetic. Again axes are drawn broken except if they coincide with
sector borders, where they are drawn full.

Together with the second part we have the condition

H − c12π

√
2π

e
e−πb + |c2|4

b2
= 0 (5.17)

which determinesb = b(H, c1, c2). For its validity we have to ensure

H/c1 � 1 and |c2|/c1 � 1. (5.18)

The free energy is calculated using TBA (e.g. see [6]):

F

2N
= f0 − T

2

∫ ∞

−∞
p(λ) ln(1 + eε1(λ)/T ) dλ − T

2

∫ ∞

−∞
p(λ) ln(1 + eε2(λ)/T ) dλ. (5.19)

For vanishing temperature the first integral is proportional toy+(iπ) yielding (in leading
order) the first term in (5.20). The calculation of the second integral is more involved, after
one has made use of equation (5.6). We give only the result for the dominant terms:

F

2N
= f ′

0 − 1

8c1π2
H 2 − H

4
− H

4πb
+ |c2|

π2b4
. (5.20)

The term proportional toH 2 givesχ0 = 1/(4c1π
2) which in some sense can be interpreted

as half of the value which we found on the conformal line. This is the susceptibility for

H � |c2| � c1 (5.21)

because thenb does not depend on the magnetic field. The term−H/4 describes a constant
magnetization for|c2| → 0, which can be found from BAE directly.

The result for|c2| � H � c1 is difficult to interpret, the limitH → 0 is not allowed
in this case.

Unfortunately we did not succeed in calculatingF for T > 0, which meets severe
difficulties.

We finish the consideration of (ii) by calculating the free energy and magnetic
susceptibility for a small Fermi radius, that is close to the line of transition to ferromagnetic
behaviour. We solve equation (5.9) forH < Hcrit with Hcrit from above (5.11).
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Making an expansion in powers of the Fermi radiusb we see that the integral on the
r.h.s. (except theδ-term) is of powerb3. Therefore, we can easily determine

ε1(λ) = ε−
1 (λ) for |λ| 6 b (5.22)

up to terms of powerb2.
From ε1(b) = 0 we have

b =
√

Hcrit − H

16c1 + 2c2
(5.23)

and

ε1(λ) = (16c1 + 2c2)(λ
2 − b2). (5.24)

The free energy per site is given by paper I (3.14)

F

2N
= −3

4
H − 2

π

1√
16c1 + 2c2

(Hcrit − H)3/2 (5.25)

and hence

χ = 3

2π

1√
16c1 + 2c2

1√
Hcrit − H

. (5.26)

This is to be compared with the same value for the usualXXX( 1
2) Heisenberg model

χXXX = 2

π

1√
16c

1√
Hcrit − H

(5.27)

in our normalization of coupling constant. That result is, of course, not the limitc2 → 0 of
equation (5.26), because the change in paper I (3.14) must also be taken into account.

At the end of this section we shortly comment on sector (iii). It is treated in the same
way as sector (ii). Equations (5.8) and (5.9) are replaced by

ε2(λ) = −2πc2p(λ) + π |c1|λ
sinh(πλ)

+
(

λ

2 sinh(πλ)
+ h(λ)

)
∗ ε−

2 + H

2
(5.28)

ε+
2 (λ) = |c1|a2(λ) − c2(a1(λ) + a2(λ)) −

(
δ(λ) + 2a2(λ) + a4(λ)

2π

)
∗ ε−

2 + 2H. (5.29)

The critical magnetic field can be read off from equation (5.9):

Hcrit = 8
3c2 − |c1|. (5.30)

For vanishing field we have ferromagnetic behaviour as long as

|c1|
c2

> 8

3
(5.31)

(compare equation (3.21)).
The power expansion inb is rather simple while the Wiener–Hopf calculation for largeb

is a little bit more involved; therefore, it is not carried out here. The results will qualitatively
agree with those from above.

The phase structure is depicted in figure 2. We have four sectors and two singular
lines (the positive axes). Three of the sectors show critical behaviour without mass gap;
one of them is truly antiferromagnetic with infinite Fermi zone. The remaining one is
ferromagnetic.
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6. Conclusions

We have considered theXXZ( 1
2, 1) model with strictly alternating spins in one part of

its critical region of anisotropy 06 γ < π/2. We expect a similar but not identical
behaviour in the other partπ/2 < γ < π because there is no obvious symmetry between
the two regions. The model contains two parameters, anisotropy and the ratio of coupling
constants, and shows a rich physical structure. Except for the isotropic model (where we
have a ferromagnetic region) we found an antiferromagnetic ground state and no mass gap.
So the model behaves critically, but it is conformally invariant only on a linec̄ = c̃ and
also in a large sector including this line and having at least one negative coupling. Around
that line there exist sectors where the ground state does not depend onγ , separated from
each other by sectors where it depends crucially onγ . It is remarkable that two kinds of
sectors are also different with respect to the occurrence of finite Fermi zones.

The sectors around the line with equal couplings are well studied now, their ground
states and excitations have been established. At the linec̄ = c̃ we have calculated low-
temperature heat capacity and magnetic susceptibility. Different signs of couplings cause
very different behaviour, e. g. different central charges (1 or 2) and different behaviour of
susceptibilities.

A subsequent paper will deal with finite size corrections in those sectors. We expect
the standard results in the conformal case, while, apart from that, conformal symmetry does
not make any prediction.

The sectors with finite Fermi zones require further treatment, including numerical
studies. The same applies to heat capacity and susceptibility for different coupling constants.
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